

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

SECURITY OF SENSOR NETWORKS

by

Hong-Siang Teo

June 2006

 Thesis Advisor: John McEachen
 Second Reader: Weilian Su

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Security of Sensor Networks

6. AUTHOR(S) Teo, Hong-Siang

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 This thesis discusses the security of sensor networks. First, an overview of the security architectures
of two dominant implementations of sensor networks in the market today is presented: the TinyOS stack
and the IEEE 802.15.4 stack. Their similarities and differences are explored and their strength and
limitations are discussed. Where applicable, comparisons are made with IEEE 802.11 Wireless LAN to
highlight improvements and lessons learned. It is pointed out that in general, IEEE 802.15.4 offers
better security, but replay protection is effectively missing in today’s implementations and access
control is poorly implemented.. Consequently, TinyOS is still the better option for devices with severe
resource constraints. Finally, as a tool to aid in the security analysis of sensor network, the design and
implementation of a TinyOS sniffer is presented and captured frames for a simple sensor network
application are analyzed for the purpose of validation.

15. NUMBER OF
PAGES

69

14. SUBJECT TERMS
Sensor Network, Security, Sniffer

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

SECURITY OF SENSOR NETWORKS

Hong-Siang Teo
DSO National Laboratories, Singapore
M.Eng., Imperial College, UK, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Hong-Siang Teo

Approved by: John McEachen

Thesis Advisor

Weilian Su
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 This thesis discusses the security of sensor networks. First, an overview of the

security architectures of two dominant implementations of sensor networks in the market

today is presented: the TinyOS stack and the IEEE 802.15.4 stack. Their similarities and

differences are explored and their strength and limitations are discussed. Where

applicable, comparisons are made with IEEE 802.11 Wireless LAN to highlight

improvements and lessons learned. It is pointed out that in general, IEEE 802.15.4 offers

better security, but replay protection is effectively missing in today’s implementations

and access control is poorly implemented. Consequently, TinyOS is still the better option

for devices with severe resource constraints. Finally, as a tool to aid in the security

analysis of sensor network, the design and implementation of a TinyOS sniffer is

presented and captured frames for a simple sensor network application are analyzed for

the purpose of validation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1

A. INTRODUCTION..1
B. THESIS OBJECTIVE..1
C. RELATED WORK ..1
D. ORGANIZATION ...2

II. SECURITY ARCHITECTURE OF IEEE 802.15.4...5
A. OVERVIEW...5
B. RELATIONSHIP WITH ZIGBEE..6
C. SECURITY SERVICES ..8

1. Access Control ...8
2. Message Confidentiality ..8
3. Message Integrity ..9
4. Replay Protection (optional) ...9

D. SECURITY SUITES..9
E. ACCESS CONTROL LIST (ACL)..10
F. MODE OF OPERATION ..11
G. NONCE OR INITIALIZATION VECTOR (IV)..12
H. SUMMARY ...13

III. SECURITY ARCHITECTURE OF TINYOS..15
A. OVERVIEW...15
B. SECURITY SERVICES...16
C. SECURITY PRIMITIVES ..17

1. Message Authentication Codes (MAC)...17
2. Encryption Scheme..18
3. Initialization Vectors (IV) ...18

D. SUMMARY..19

IV. ANALYSIS OF 802.15.4 AND TINYOS SECURITY ..21
A. MODULARITY VS OPTIMIZATION...21
B. KEYING MECHANISM AND IV...22
C. ACCESS CONTROL...24
D. MESSAGE INTEGRITY...26
E. ENCRYPTION SCHEMES ...27
F. REPLAY PROTECTION ..27
G. SUMMARY..28

V. ANATOMY OF THE TINYOS SNIFFER ...29
A. TINYOS FILTERING MECHANISM ...29

1. Destination Address ..29
2. Group ID..29
3. AM Type ..30

B. COMPONENTS OF THE SNIFFER ..30

 viii

1. Hardware components ..30
2. Software Components ...31

C. SUMMARY..32
VI. DESIGN AND IMPLEMENTATION OF THE SNIFFER APPLICATION33

A. USAGE ...33
B. PROCESS FLOW ..34
C. DESCRIPTION OF THE MAJOR JAVA CLASSES..................................35

1. Data Classes...37
2. Input Subsystem ..38
3. Processing Subsystem..38
4. Output Subsystem ...39

D. EXTENDING SNIFFER..40
1. Adding Input Sources..40
2. Adding AM Handlers ..41
3. Adding output channels ..41

E. TEST AND EVALUATION ..41
1. CountRadio application ..42
2. Output..42
3. Observations and Recommendations ...44

F. SUMMARY ..44

VII. CONCLUSION...47
LIST OF REFERENCES..49

INITIAL DISTRIBUTION LIST ...53

 ix

LIST OF FIGURES

Figure 1: Illustration of a Zigbee/802.15.4 network. The green links and nodes show

the star topology, while the blue links and nodes show the mesh topology.
Through appropriate routing nodes, star and mesh networks can interoperate.6

Figure 2: Relationship between Zigbee and 802.15.4. Note the separation point in the
medium access control layer. ..7

Figure 3: Format of the 802.15.4 IV for AES-CTR security suite [11].12
Figure 4: TinyOS packet formats. The byte sizes of the fields are indicated in

parentheses. The shaded fields are protected by the MAC. Note that the
Group field is omitted from the TinySec packet formats – group membership
is implicit in the knowledge of the secret key [20]. ...17

Figure 5: Chipcon CC2420 RAM memory map..26
Figure 6 TelosB mote connected to the USB port of a PC...31
Figure 7 Block diagram of TinyOS Sniffer. ..32
Figure 8 Process flow chart for Sniffer. ..34
Figure 9 UML diagram of Sniffer. ..36
Figure 10 Captured screen output of Sniffer sniffing on 2 motes running the

CountRadio application. The sniffer was started after the motes. Hence the
lower packet count..43

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1: IEEE 802.15.4 security suites. The only mandatory security suite that each

device that implements security shall support is AES-CCM-64 [11].10
Table 2: IV reuse periods for TinyOS and 802.15.4 between two communicating nodes...23

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Security in sensor networks is an active but wide-open research field. Past

experiences with other wireless technologies have shown that security will be an

important factor in deciding the viability of sensor networks. But sensor networks have

entirely different physical and network characteristics from conventional wireless

networks, so they pose unique security challenges where traditional security techniques

cannot be applied directly.

There are two dominant sensor network implementations in the market today,

namely TinyOS and IEEE 802.15.4. TinyOS targets devices where energy and

computation power are significant resource constraints. IEEE 802.15.4 takes a more

modular approach to its design, and is suited for a variety of devices and applications.

Currently TinyOS is more popular. But the formal adoption of the IEEE 802.15.4

standard should accelerate its acceptance in the sensor network community.

In this thesis, the security architectures of TinyOS and IEEE 802.15.4 are

examined. The focus is on link layer security because, like other wireless networking

technologies, the threat of interception by an adversary is always present. The security

services they provide are described in terms of access control, message confidentiality,

message integrity, and replay protection.

It is pointed out that in general, IEEE 802.15.4 offers higher assurance in terms of

cryptographic strength, message integrity, and information leakage from IV reuse.

TinyOS applications will need robust re-keying support and countermeasures against

forgery attempts to make up the difference. But they both lack effective peer-level access

control and replay protection – both important aspects of sensor network security.

For resource-limited sensor networks, TinyOS is still the better choice. For

military applications where security and performance needs dominate, a hybrid

TinyOS/IEEE 802.15.4 system would be ideal. Given the open source nature of the

TinyOS project, it is conceivable that TinyOS can be adapted to leverage on IEEE

802.15.4-compliant hardware for its link layer security, instead of relying on TinySec –

 xiv

TinyOS’s own link layer security implementation. TinyOS packets can be encapsulated

inside IEEE 802.15.4 frames, just like TCP/IP packets are encapsulated inside IEEE

802.11 frames. In this way, sensor network applications can be built that enjoy the best of

both worlds – the mature and optimized environment of TinyOS, and the superior link

layer security offered by IEEE 802.15.4.

The design and implementation of a TinyOS Sniffer tool is presented. A sniffer is

the quintessential tool for modern day network and security analysis. But such a tool is

presently lacking in today’s sensor network development kits. The current design is based

on existing sensor network hardware and software components to enable a low-cost

sniffer implementation. The sniffer has also been designed to be easily extensible in

terms of functionalities. Captured frames for a simple sensor network application are

analyzed for the purpose of validation.

The following are recommended areas for further research:

• Improve the functionality of the TinyOS sniffer. Areas of improvement

include tighter integration of the Sniffer with the mote hardware, and

additional output modes for packet data such as the XML format.

• Integrating TinyOS with 802.15.4-compliant hardware, with support for peer-

level access control and replay protection.

1

I. INTRODUCTION

A. INTRODUCTION
Security in sensor networks is an active but wide-open research field. Initial

research efforts in sensor networks have understandably been focused on functionality,

stability, and cost effectiveness. But past experiences with other wireless technologies

have shown that security will be an equally important factor in deciding the viability of

sensor networks. In order for a sensor network to be resilient to the myriad of network

attacks that it will inevitably face, security must pervade its entire system design. The

good news is that the sensor network is still very much in its infancy, so there are ample

opportunities for researchers to ensure that security is designed into sensor networks, and

that it is done right. The bad news, however, is that since sensor networks have entirely

different physical and network characteristics from conventional wireless networks, they

pose unique security challenges where traditional security techniques cannot be applied

directly. New and innovative approaches must be sought.

B. THESIS OBJECTIVE
This thesis examines the current state of sensor network security, assesses its

adequacy, and identifies potential areas of research. The main objective is to understand

the design and implementation issues in realizing a secure deployable sensor network. A

secondary objective is the design and development of a sensor network packet sniffer. A

sensor network packet sniffer will assist in further analyzing and validating some of the

issues identified in this thesis.

C. RELATED WORK
Researchers have known about the challenges facing sensor network security

[1,2,3]. These include key establishment and trust setup, secrecy and authentication,

privacy of sensed data, denial-of-service, secure routing, node capture, eavesdropping,

and malicious use of the technology. For denial of service, researchers have found that a

variety of attacks can be mounted at the physical, link, network and transport layers [4].

2

New classes of routing attacks, called sinkhole and HELLO floods, have been devised

[5]. In addition, a variety of ad-hoc and peer-to-peer networking attacks, like the Sybil

attack [6], can be adapted into powerful attacks against sensor networks [7]. Commercial

tools are available for packet sniffing of a IEEE 802.15.4 network [8].

Researchers have studied the security of IEEE 802.15.4, and a few problems have

been found [9]. These include lack of integrity protection for acknowledgement packets,

key management issues, and lack of support for group keying models. Nonetheless, they

conceded that the 802.15.4 security is fundamentally sound, and that proper use of the

security API can lead to secure applications. SNEP (Secure Network Encryption

Protocol), part of the SPINS [10] (Secure Protocols for Sensor Networks) framework,

appears to be an alternative security architecture specifically targeted at sensor networks.

But SNEP was unfortunately not fully specified nor fully implemented.

D. ORGANIZATION
The first step to a secure deployable sensor network is to understand the security

from the ground up. Chapters II and III of the thesis examine the link layer security

offered by the two dominant sensor network implementations in the market today,

namely TinyOS and IEEE 802.15.4. Like other wireless networking technologies, the

communications of sensor networks do not enjoy the benefits of physically protected data

links, so the threat of interception by an adversary is always present. Hence, link layer

security is an especially important consideration for wireless sensor networks. Chapter IV

discusses the similarities and differences in the security architecture of TinyOS and IEEE

802.15.4, as well as their strength and limitations. Where applicable, comparisons are

made with IEEE 802.11 Wireless LAN to highlight improvements and lessons learnt.

Next, the design and implementation of a sensor network sniffer is described in

Chapters V and VI. A sniffer is the quintessential tool for network analysis. But such a

tool is presently lacking in today’s sensor network development kits. The current design

is based on existing sensor network hardware and software components to enable a low-

cost sniffer implementation. Captured frames from a simple sensor network application

are analyzed for the purpose of validation.

3

Finally, Chapter VII concludes with a summary of the key points of this thesis,

and recommended areas for further research.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. SECURITY ARCHITECTURE OF IEEE 802.15.4

A. OVERVIEW
The IEEE 802.15.4 standard [11] (802.15.4) is also known as the Low Rate

Wireless Personal Area Network (LR-WPAN). It is designed to be a low-cost, low-

complexity and short-range wireless communication network for applications with

limited power and relaxed throughput requirements. Strictly speaking, 802.15.4 defines

protocols not specifically for sensor networks, but for Wireless Personal Area Networks

(WPAN). It is part of the WPAN family of standards that covers a personal operating

space (POS) of typically 10 meters. But it has begun to attract strong interest from the

sensor network community in using these protocols for sensor networks.

An 802.15.4 network can operate in either a star or peer-to-peer (mesh) topology,

as illustrated in Figure 1. Each node in the network can either be a Full-Function Device

(FFD), or a Reduced-Function Device (RFD).

The FFD embodies all the functionalities of an 802.15.4 device. It can operate in

three roles: a PAN coordinator, a coordinator, or a device. An 802.15.4 network must

include at least one FFD acting as the PAN coordinator in order for the network to form.

On the other hand, an RFD is an extremely simple device that can talk only to an FFD.

RFDs are useful for say, a light switch or a passive infrared sensor. Thus, in a typical

sensor network, the “leaves” of the network can be visualized to be either RFDs or FFDs,

while the gateway or router is an FFD.

Each device in the 802.15.4 network can by addressed by either a 64-bit extended

address, or a 16-bit short address. The former is the global unique address of the device,

analogous to the 48-bit Ethernet address of network interface cards. The latter is a

convenient shorthand in a network-specific setting.

6

Figure 1: Illustration of a Zigbee/802.15.4 network. The green links and nodes
show the star topology, while the blue links and nodes show the mesh topology.
Through appropriate routing nodes, star and mesh networks can interoperate.

Source: [From 12].

B. RELATIONSHIP WITH ZIGBEE
Zigbee [13] is often spoken in the same breath as 802.15.4. They are not the same,

although Zigbee is designed to work in tandem with 802.15.4. Their relationship is

illustrated in Figure 2.

802.15.4 is based on the classic Open Systems Interconnection (OSI) seven-layer

model [14], where it defines the physical layer and the media access control layer. The

physical layer contains the radio frequency transceiver along with its low-level control

mechanism. The media access control layer forms part of the data link layer, and provides

access to the physical channel for all types of transfer. This is the typical way that recent

IEEE 802.x standards are specified. Its purpose is to provide a common and interoperable

communications platform that higher layer protocols can leverage on.

The higher layer protocols are defined by specific applications such as Zigbee.

Zigbee builds on the 802.15.4’s physical and medium access control layers with a

network layer and an application layer that manage routing, discovery, security, and other

network-level functions. Of note, the security services provided by Zigbee include

methods for key establishment, key transport, frame protection, and device management.

7

Figure 2: Relationship between Zigbee and 802.15.4. Note the separation point
in the medium access control layer.

Source: [From 12].

As such, the security provided by 802.15.4 can be considered to be link layer

security primarily aimed at node-to-node security, while the security provided by Zigbee

can be considered application layer security primarily aimed at end-to-end security.

Zigbee security is thus analogous to SSH [15], SSL/TLS [16] and IPSec [17].

In section 2.4 of his book [18], Stallings noted that with end-to-end security, the

user data is secure, but the traffic pattern is not, since packet headers must be transmitted

in the clear for the packet to be successfully routed to the destination. User data is

therefore subjected to traffic analysis [19]. To achieve greater security, both link and end-

to-end security are needed. Hence, 802.15.4 security and Zigbee security should

complement but not replace each other.

Karlof, Sastry and Wagner [20] opined that the dominant traffic pattern in sensor

networks is not end-to-end communication, but many-to-one communication, where in-

network processing such as aggregation and duplicate elimination is used to reduce

network traffic and save energy. Since in-network processing requires each intermediate

node to access, modify and suppress the contents of messages, the more appropriate

security mechanism to study should be node-to-node security instead of end-to-end

8

security. For this reason, the analysis of the security of Zigbee stack is outside the scope

of this thesis. Nonetheless, it is recognized that end-to-end security will still have value

for security services like keying.

The following sections discuss key components of the 802.15.4 security

architecture.

C. SECURITY SERVICES

The International Telecommunication Union (ITU) Telecommunication

Standardization Section (ITU-T) Recommendation X.800 [21] defines four classes of

layer 2 security services between communicating open systems, namely authentication,

access control, message confidentiality, and message integrity. 802.15.4 uses the

following terms for its security services: access control, data encryption, frame integrity,

and sequential freshness. In this thesis, the more conventional terms of access control,

message confidentiality, message integrity, and replay protection, respectively are

adopted.

802.15.4 provides all four of these services, but only three of them are specified in

the standard, namely access control, message confidentiality and message integrity. Peer

entity authentication is embedded in message integrity. In addition, an optional fourth

security service, replay protection, is provided by 802.15.4, although one may say that it

can be considered part of message integrity too.

1. Access Control
Access control provides the ability for a device to select the other devices with

which it is willing to communicate. At the same time, it also prevents unauthorized

parties from participating in the network. In 802.15.4, access control is implemented by

an access control list (ACL) that each device maintains for the nodes that it is willing to

communicate with. The ACL is explained in more details later.

2. Message Confidentiality
Message confidentiality means keeping information secret from unauthorized

observation. In 802.15.4, message confidentiality is achieved through a symmetric cipher,

using a key shared by a group of devices (typically stored as the default key) or using a

key shared between two peers (typically stored in an individual ACL entry). Message

9

confidentiality may be provided on beacon payloads, command payloads, and data

payloads, but not on acknowledgement payloads.

3. Message Integrity
Message integrity means protecting the data from unauthorized modification. In

802.15.4, message integrity is achieved by using a message authentication code (MAC).

802.15.4 refers to the message authentication code as a message integrity code (MIC) in

order to differentiate it from the media access control layer, which also abbreviates to

MAC. This is beginning to become the convention used in recent IEEE standards. In this

thesis, however, the cryptographic convention of using MAC as an abbreviation for

message authentication code is adhered to. To avoid any confusion, media access control

is not abbreviated.

 A MAC is a key-dependent one-way hash function [22] that is applied over the

entire packet, including the packet headers. The key used to compute the MAC is the

same key used for data confidentiality. Since the MAC depends on the key, the MAC

further provides peer entity authenticity. The MAC may be provided on beacon frames,

command frames, and data frames, but not on acknowledgement frames. Note the

distinction between frame and payload. Encryption is applied to the packet payload,

while MAC is applied to the entire frame, including the headers.

4. Replay Protection (optional)
Replay protection uses an ordered sequence of inputs to detect and reject frames

that have been replayed. The sender assigns a monotonically increasing sequence number

to every outgoing packet, and the receiver rejects packets with sequence numbers smaller

than the one it has already received. A receiver can optionally enable replay protection

when encryption is enabled.

D. SECURITY SUITES

802.15.4 provides the security services via a set of pre-defined security suites (see

Table 1). These security suites will only be used when the application specifies that the

device shall operate in secured mode.

A security suite consists of a set of operations to perform on medium access

control layer frames. The security suite name indicates the symmetric cryptography

10

algorithm, mode, and integrity code bit length. The encryption algorithm used is

Advanced Encryption Standard [23] (AES). The only mandatory security suite that each

device that implements security shall support is the AES-CCM-64 security suite [11].

 Security Services

Security suite Access
control

Message
encryption

Message
integrity

Replay
protection Description

NONE No security

AES-CTR X X X
Encryption only with
AES with counter (CTR)
mode

AES-CCM-128 X X X X

AES-CCM-64 X X X X

AES-CCM-32 X X X X

Encryption with AES
with counter mode, and
authentication with CBC-
MAC [24]

AES-CBC-MAC-128 X X

AES-CBC-MAC-64 X X

AES-CBC-MAC-32 X X

Authentication only with
CBC-MAC

Table 1: IEEE 802.15.4 security suites. The only mandatory security suite that
each device that implements security shall support is AES-CCM-64 [11].

E. ACCESS CONTROL LIST (ACL)
The media access controller maintains a single default ACL entry and an ACL

table. The default ACL entry is known by every device in the PAN and is used in

situations in which the device needs to communicate with a second device or with

multiple devices that it may not know individually. It is analogous to a broadcast or group

key. This default ACL entry indicates whether default security is to be applied to devices

not in the ACL, and if so, the default security suite and security material to use. The

default security suite specified in the standard is none, with an empty string for the

security material.

Individual ACL entries in the ACL table are used in situations in which the device

shares a key with a specific known device. This implies a trusted relationship has been

established between these two devices. Therefore, each ACL entry corresponds to a

11

trusted device, and consists of its PAN identifier, its 64 bit extended address, its 16 bit

short address (or 0xffff if this address is not known), and its security suite and related

security material. When replay protection is enabled, the security material includes a high

water mark of the most recently received sequence number. There can be a maximum of

255 entries in the ACL table.

F. MODE OF OPERATION
The media access controller can be set in one of three security modes, namely

unsecured mode, ACL mode, and secured mode. Unsecured mode is self-explanatory.

ACL mode does not perform any cryptographic operations on the frames, but provides

only a means for the device to indicate to the application whether the frame comes from a

device in the ACL table. Secured mode utilizes the ACL functionality and also provides

cryptographic protection on incoming and outgoing frames.

When the media access controller receives a packet from the application to send

in secured mode, the ACL is consulted to find an entry that matches the destination

address of the packet. If there is a match, the security material in the ACL entry is used to

encrypt and/or authenticate the packet, according on the security suite specified in the

ACL entry. If there is no match, then the default ACL entry is checked to see if default

security is to be applied. If this setting is true, then the default security suite and security

material is used to process the packet. Note that this can mean no security. Otherwise, the

media access controller reports an error to the application.

On packet reception, the media access controller consults a flag in the packet

header to determine if any of the security suites have been applied to the packet. If no

security has been applied, the packet is passed on to the application as is. Otherwise, a

process similar to the sending process is used, but this time based on the source address.

If replay protection is enabled, the media access controller also verifies that the sequence

number of the packet is greater than the one stored at the corresponding ACL entry. If it

is, the ACL entry is updated with the new sequence number as the new high water mark.

Otherwise, an error is reported to the application.

12

G. NONCE OR INITIALIZATION VECTOR (IV)
An important aspect of data confidentiality is semantic security [25]. It means that

besides preventing plaintext recovery, the encryption scheme should also prevent

adversaries from learning even partial information about the plaintext. One implication of

semantic security is that encrypting the same plaintext twice must result in two different

ciphertexts. A common technique to achieve this is to use a nonce, or more commonly

called the initialization vector (IV), as a side input to the cipher in addition to the key. So

long as the IV is unique for each encrypted packet, then no two packets can be encrypted

to the same ciphertext, even if they have the same data, which is not an uncommon

situation in computer networking. Since the receiver must use the IV to decrypt

messages, the security of most encryption schemes do not rely on the IV being secret.

Hence, the IV is typically sent in the clear with the encrypted packet. The IV is often a

monotonically increasing large number. Another strategy to generate IV is to randomly

choose from an n-bit value. But by the birthday paradox, it is likely that the first

repetition will occur after 2n/2 packets have been sent. On the other hand, if the IV is

chosen from an n-bit counter, then the first repetition will not occur before 2n+1 packets

have been sent. Hence, the later strategy is often the more popular.

In 802.15.4, the IV is constructed from the following data: a static flags field, the

64 bit extended address, a 4 byte frame counter, a 1 byte key counter, and a 2 byte block

counter (See Figure 3).

1 byte 8 bytes 4 bytes 1 byte 2 bytes

Flags Source Address Frame counter Key Counter Block Counter

Figure 3: Format of the 802.15.4 IV for AES-CTR security suite [11].

There is a cryptographic requirement that the same IV must not be used to encrypt

two different packets with the same key. Otherwise, it is possible to recover information

about both plaintext messages [26]. Given two ciphertexts produced with the same

(IV,K) pair:

13

C1 = AES(IV,K) ⊕ P1

C2 = AES(IV,K) ⊕ P2

C1 ⊕ C2 = AES(IV,K) ⊕ P1 ⊕ AES(IV,K) ⊕ P2 = P1 ⊕ P2

Given the well-known structure of network messages, recovering the XOR of the

two plaintexts makes it significantly easier to recover the two plaintexts.

The frame counter and key counter are key (pun unintended) in ensuring that this

will not be the case. The frame counter is maintained by the media access controller,

while the key counter is controlled by the application. The media access controller

increments the frame counter for every encrypted packet sent. When the frame counter

reaches the maximum value and rolls over, the media access controller notifies the

application with an error. The application must increment the key counter to continue

encrypting packets.

When both the frame counter and key counter are exhausted, no further

encryption is possible with this key, until a new key is established.

Instead of sending the entire IV with the encrypted payload, only the frame

counter and key counter are pre-pended to the encrypted payload and sent in the clear.

The rest of the fields of the IV can be derived from the packet.

In previous sections, a sequence number that is used in replay protection has been

alluded to. In 802.15.4, this sequence number is the five byte value constructed from the

concatenation of the frame counter and the key counter.

H. SUMMARY

The basic security architecture of 802.15.4 was presented. A distinction has been

made between application-layer security offered by Zigbee, and the link-layer security

offered by 802.15.4. The discussion includes its security services and security suites, as

well as its mode of operation, and the specification of the access control list and

initialization vector. Overall, 802.15.4 has a comprehensive set of services to enable

14

secure link-layer communications in sensor networks. In the next chapter, the security

architecture of TinyOS will be presented.

15

III. SECURITY ARCHITECTURE OF TINYOS

A. OVERVIEW
TinyOS is a popular research platform for sensor networks, frequently used in

conjunction with the Crossbow motes [27] as the preferred microprocessor and radio

hardware. From its website [28],

TinyOS is an open-source operating system designed for wireless
embedded sensor networks. It features a component-based architecture
which enables rapid innovation and implementation while minimizing
code size as required by the severe memory constraints inherent in sensor
networks. TinyOS's component library includes network protocols,
distributed services, sensor drivers, and data acquisition tools – all of
which can be used as-is or be further refined for a custom application.
TinyOS's event-driven execution model enables fine-grained power
management yet allows the scheduling flexibility made necessary by the
unpredictable nature of wireless communication and physical world
interfaces.

The topology of a sensor network based on TinyOS devices depends entirely on

the application and the networking stack used. A TinyOS application, and indeed parts of

TinyOS itself, is programmed in an object-oriented componentized C language extension,

called nesC [29]. For example, Surge is a popular mesh networking stack. For Surge-

based applications, the topology is similar to one based on 802.15.4, but it does not have

an implicit hierarchy of nodes like 802.15.4 does.

A TinyOS device is addressed by a 16-bit address, augmented with an 8-bit group

ID. The group ID is analogous to the network address for a group of cooperating nodes. It

allows multiple distinct groups of motes to share the same radio channel. In addition,

TinyOS implements the Active Message (AM) system. AM types are analogous to port

numbers in TCP/IP. Each TinyOS packet includes an 8-bit AM type in the header (see

Figure 4).

Early versions of TinyOS did not have security built in at all. In late 2004, the

developers of TinyOS introduced TinySec [30], a lightweight generic link layer security

package that developers can easily integrate into their TinyOS applications. The authors

foresee that TinySec will cover the basic security needs of all but the most security

16

critical applications. To enable TinySec in TinyOS, the application needs to specify

TINYSEC=true on the command line to make, or in the Makefile. Unfortunately, at

this moment, TinySec only works in the TOSSIM simulator and the Mica and Mica2

motes [38]. It has not yet been ported to the MicaZ and Telos motes.

Since the main focus of this thesis is on security, henceforth, when the term

“TinyOS” is used, it is meant to be TinyOS with TinySec enabled.

The following paragraphs discuss the key components of the TinyOS security

architecture. Because TinyOS is not a formal specification like 802.15.4, there is no

official documentation on TinySec. Almost all the information discussed here is taken

from [20,30,38] and the TinyOS source code, which can be downloaded from [28].

B. SECURITY SERVICES
The security provided by TinyOS centers on message integrity and message

confidentiality. As in 802.15.4, peer entity authenticity is embedded in message integrity

through the use of a MAC. Unlike 802.15.4, however, TinyOS does not explicitly provide

access control via an ACL.

TinyOS supports two security options: authenticated-encryption (TinySec-AE)

and authentication-only (TinySec-Auth). The former encrypts the data payload, then

computes the MAC over the packet header and encrypted payload. The latter does not

encrypt the data payload, but only computes the MAC over the packet header and data

payload. The default security mode of a TinySec-enabled application is TinySec-Auth.

The TinySec mode is indicated in the upper 2 bits (MSB) of the length field of the packet

header. This modification is harmless because the maximum size of the data field in a

TinyOS packet is 29 bytes, i.e., at most 5 bits of the length field will be used.

It can be seen from Figure 4 that the TinyOS and the TinySec-Auth packets do

not have a field for the source address. So it is impossible for the receiver to know where

the packet came from. Source address is only included in the TinySec-AE packet, and

that was primarily for the benefit of increasing the diversity of the IV. Hence, if an

application wants to implement ACL-based access control, then it can only do so with

TinySec-AE.

17

Figure 4: TinyOS packet formats. The byte sizes of the fields are indicated in
parentheses. The shaded fields are protected by the MAC. Note that the Group field
is omitted from the TinySec packet formats – group membership is implicit in the

knowledge of the secret key [20].

C. SECURITY PRIMITIVES

1. Message Authentication Codes (MAC)
As in 802.15.4, TinySec uses the cipher block chaining construct, CBC-MAC

[24], for computing and verifying MACs. The MAC is 32-bit long, and is computed over

the headers as well as payload of the packet. The authentication key is 64 bits long.

While the security of the MAC is directly related to the length of the MAC, the

developers argued in that given the expected low data rate of the sensor network, a 32-bit

MAC may provide an adequate level of security against blind forgeries. Adversaries

cannot determine off-line if he has successfully forged a valid MAC for a particular

message, hence any forgery attempts will be “blind”. For example, if an adversary tries to

flood a 19.2 kb/s channel with blind forgery attempts, it may take him over 20 months to

succeed, notwithstanding the fact that he would have effectively conducted a denial-of-

service (DoS) attack on the network and exhausted the battery of the device long ago.

Dest

(2)

AM

(1)

Len

(1)

Src

(2)

Ctr

(2)

Encrypted Data

(0..29)

MAC

(4)

IV

(a) TinySec-AE packet format

Dest

(2)

AM

(1)

Len

(1)

Data

(0..29)

MAC

(4)

(b) TinySec-Auth packet format

Dest
(2)

AM
(1)

Grp
(1)

Len
(1)

Data
(0..29)

CRC
(2)

(c) TinyOS packet format

18

Furthermore, sustained forgery attempts can be pre-empted through simple

heuristics. For example, nodes can signal the base station when the rate of MAC failures

exceeds some reasonable threshold. Such countermeasures would mitigate the need for a

longer MAC. Unfortunately, TinyOS leaves the implementation of such countermeasures

to the application.

2. Encryption Scheme
The default cipher used in TinyOS is Skipjack in 64-bit cipher block chaining

(CBC) mode, in conjunction with an eight byte IV, using a 64-bit encryption key. RC5 is

also feasible. These two ciphers were found to be most appropriate for software

implementation on embedded microcontroller as far as implementation efficiency and

performance are concerned. The TinyOS source code includes implementation for both

Skipjack and RC5. AES was later deemed to be equally suitable as well.

The choice of using CBC mode over stream cipher was primarily because with

regards to semantic security, CBC mode is believed to degrade more gracefully when IV

reuse occurs. This is an important consideration for TinyOS, because between two

communicating nodes, the IV could be as small as a 16-bit value. If the IV is long enough

so that it is not expected to repeat in a long time, then a stream cipher like AES-CTR

performs much better. An additional advantage is that the same block cipher code can be

used for the message authentication code (CBC-MAC), thus saving considerable code

space.

3. Initialization Vectors (IV)
As in 802.15.4, the encryption scheme uses an IV to achieve semantic security.

The format of the IV is shown in Figure 4a. The first four bytes of the IV are borrowed

from the existing header fields of the TinyOS packet: the destination address, the AM

type, and the length of the packet. The last four bytes are comprised of the source address

and a 16-bit counter. The counter is initialized to zero, then incremented by one after

every message sent.

The last four bytes of the IV is chosen in this way to maximize the number of

packets each node can send before there is a global repetition of the IV. That is, each

node can send at least 216 packets before IV reuse occurs. For a network of n nodes, this

results in n.216 packets before IV reuse occurs in the network.

19

The developers felt that this IV design should provide adequate security. Since

sensor networks must conserve power to be long-lived, the average packet rate in most

sensor networks will be very low – on the order of one packet per minute. At one packet

per minute, IV reuse will not occur for over 45 days. In addition, the selection of CBC

encryption mode further mitigates the risk of information leakage when IV reuse occurs.

In short, information may only leak when one node sends two different packets with the

same first eight bytes and IV, to the same destination, with the same AM type, and of the

same length.

D. SUMMARY
The basic security design of the TinyOS, or more specifically TinySec, was

presented. The security provided by TinyOS centers on message integrity and message

confidentiality. Peer entity authenticity is embedded in message integrity through the use

of a MAC. On the other hand, TinyOS does not explicitly provide access control via an

ACL. There are 2 security modes: authenticated-encryption, and authenticated only.

Security primitives such as message authentication codes, encryption scheme and

initialization vector has also been discussed. With the background information on

802.15.4 and TinyOS now in place, the next chapter will discuss their similarities,

differences, strength and limitations.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. ANALYSIS OF 802.15.4 AND TINYOS SECURITY

In this chapter, the similarities and differences between the security designs of

802.15.4 and TinyOS will be examined, and their strength and limitations discussed.

Where applicable, lessons learned from another wireless standard, IEEE 802.11 Wireless

LAN [31] (802.11), will be applied to assess the adequacies of 802.15.4 and TinyOS

security.

A. MODULARITY VS OPTIMIZATION
The objectives of 802.15.4 and TinyOS are very similar: ease of deployment,

reliability and robustness, short-range operations, extremely low cost, and long battery

life. But they are quite different in the way they are architected. The contrast can be

summarized as Modularity versus Optimization.

802.15.4 follows the tried-and-tested layered protocol approach of the seven-layer

OSI model. 802.15.4 specifies the lower 2 layers, namely physical and media access

control. In this regard, it is very similar to 802.11. The inherent modularity of this model

allows powerful higher layer specifications like Zigbee to export their own services,

which applications can easily take advantage of. The downside is added code complexity,

memory overhead, and processing delay in the handling of packets as they traverse the

layers – a luxury that some sensor network applications can ill afford.

On the other hand, TinyOS resembles more of a toolkit or library for fast

prototyping of sensor network applications. The OS is built-in to abstract the underlying

hardware and support an event-driven framework. Unlike 802.15.4, TinyOS is tailor-

made for sensor networks, and targets devices with limited memory and power. Many of

the design decisions were made under the constraints of significant resource limitations.

Betweem the two, TinyOS would easily offer a more optimized and energy efficient

sensor network solution. The cost to pay for this optimization is the loss of some

implementation transparency, the ability to modularize the solution, and perhaps some

degree of assurances especially for applications where security is critical.

22

It should be noted that 802.15.4 is intended for hardware implementation on a

dedicated radio chip, while TinyOS does not require dedicated hardware. The developers

of TinyOS do not see this as a handicap. They claim that with sufficient engineering

efforts, it is possible to encrypt and authenticate all communications entirely in software

without major performance degradation. This result is a testament to the optimization

possible in TinyOS.

As of today, the only radio chip that claims to be fully 802.15.4 compliant is the

Chipcon CC2420 (CC2420) [32,33], currently used in Crossbow’s MicaZ and the TelosB

motes. It operates in the 2.4 GHz frequency band with a data rate of 250 kbps.

B. KEYING MECHANISM AND IV
Neither 802.15.4 nor TinyOS addresses the issue of the keying, that is the manner

in which keys are generated, distributed, and securely stored (or destroyed). Section

5.4.6.1 in [11] states,

the security mechanisms in this standard are symmetric-key based using
keys provided by higher layer processes. The management and
establishment of these keys is the responsibility of the implementer. The
security provided by these mechanisms assume[s] the keys are generated,
transmitted, and stored in a secure manner.

Given that keying is generally considered a higher layer service, this position is

understandable. But keying has a critical inter-dependency with one aspect of link layer

security: the IV. Recall that to achieve semantic security, a node must not use the same

IV with the same key for encryption. This is especially true when the IV is used with a

stream ciphers like AES-CTR used by 802.15.4, or RC4 used by 802.11. 802.11 used a

woefully inadequate 24-bit IV. On a network with a moderate load, this IV space was

exhausted within a few hours. When there are multiple hosts within the wireless network,

the situation is exacerbated since they all share the same encryption key.

Both 802.15.4 and TinyOS learned this lesson: 802.15.4 uses a much longer IV,

up to 40 bits. While TinyOS limits itself to a shorter IV, it tries to mitigate the risk of

information leakage through the use of CBC encryption mode rather than naively use a

stream cipher.

23

Table 2 illustrates the theoretical IV reuse periods for TinyOS and 802.15.4

between 2 communicating nodes for the various data rates shown. The packet sizes

chosen are the maximum packet sizes, so that if the actual packets are smaller, then the

IV reuse periods will be shorter than those shown. The IV length of 40 bits for 802.15.4

assumes both the frame counter (4 bytes) and the key counter (1 byte) are in use.

IV reuse period

Data
rate

(kb/s)

Packet
size

(bytes)

Maximum
throughput

(pkt/s)
IV

length
100%

duty cycle
At 1

pkt/min
Mica2[34] 38.4 120 9.1 min TinyOS MicaZ[35] 250

41
780

16 bits
1.4 min

45.5
days

20 20 1743 yrs
40 40 872 yrs 802.15.4
250

128

250

40 bits

139 yrs

>2m yrs

Table 2: IV reuse periods for TinyOS and 802.15.4 between two
communicating nodes.

It can be seen from the table that in the worse case, i.e., 100% duty cycle, it will

take a matter of minutes in TinyOS for IV reuse to occur, while it will take hundreds of

years for 802.15.4. Even in the optimistic case of one packet per minute, it will take

slightly more than 45 days in TinyOS for IV reuse to occur, while it will take more than 2

million years for 802.15.4.

This implies that for TinyOS to avoid IV reuse, a new key will have to be

established every 45 days. In practice, one may re-key well before that period runs out.

On the other hand, re-keying may not even be an issue for 802.15.4, since the IV reuse

period will be longer than the lifetime of almost all applications.

It is stated here that the IV length of TinyOS is 16 bits. This warrants some

discussion. On paper, TinyOS states that the IV is 8 bytes (see Figure 4a). But between

two communicating nodes, only the last 2 bytes will be constantly variable. The

destination address, source address and AM type are most likely fixed. Theoretically, the

length field may also be variable, but most sensory messages will be fixed length, or have

low variances in their lengths. Hence, it can be concluded that the IV length is effectively

only 16 bits.

24

Even if a constantly varying length field is taken into consideration, it will only

add five bits to the IV, not eight bits, because the maximum data field size is 29 bytes.

This translates into a 32 times increase in the IV reuse period. For the optimistic case of

one packet per second, it becomes a more respectable 4 years. But in the worst case, it is

still only in the order of hours.

To be fair, it was a conscious design decision by the developers of TinySec to

choose a 16-bit IV, and accept that IV reuse will occur, because a longer IV was deemed

to add unacceptable overhead to the TinyOS packet size. Thus, CBC mode was

specifically chosen because of its robustness to information leakage when IVs repeat. In

short, information only leaks when two packets with the same first 8 bytes and IV are

sent, assuming the rest of the fields are identical.

In summary, the long IV length of 802.15.4 means that the IV is unlikely to be

exhausted in the lifetime of any application. Hence 802.15.4 applications can get away

with not having to contend with re-keying issues. On the other hand, the short IV length

combined with CBC mode may be sufficient security for most TinyOS applications. For

applications requiring higher assurances, however, either a robust re-keying mechanism

must be used, or TinyOS’s IV must be customized to a longer length.

C. ACCESS CONTROL
802.11 did not specify a mechanism for access control within the wireless

network. Most vendors choose to implement Ethernet address-based access control list at

the access point. Unfortunately, the Ethernet address alone does not provide a strong

enough identity. Attackers can sniff Ethernet addresses wirelessly and then spoof them

via software [36] to impersonate legitimate clients. Encrypting the wireless traffic via a

shared key may exclude adversaries without the key, but once the key is compromised,

the adversary will again be able to impersonate any legitimate client.

Access control is an important consideration in sensor networks, because sensor

network nodes are susceptible to physical capture. Therefore if the access control of the

network is based on a single shared key, then once a node is captured and the key

compromised, the access control for the entire network fails. The remaining sensor nodes

25

may have to be recovered and securely re-keyed with a new shared key – not always a

feasible course of action. On the other hand, if the access control is based on pair-wise

keys, then capturing a node will just violate the access control relationship with its peers,

not the entire network. If a node is suspected of being captured, the network can simply

instruct the captured node’s immediate peers to expel the node from their access control

list. There is no need to re-key the entire network. Hence, access control via an ACL with

pair-wise keying should be the preferred access control mechanism for sensor networks.

TinyOS enforces access control with a MAC computed from a network-wide

shared key. On the other hand, 802.15.4 can potentially offer very fine-grained access

control. Each device can hold up to 255 entries in its ACL table, one for each trusted

peer. Each trust relationship can have its individual security settings; authenticate-only,

encrypt-only, or authenticate-encrypt.

An interesting scenario arises when an FFD is physically captured. In this case, an

attacker can make use of the captured FFD to impersonate as a PAN coordinator, thus

potentially routing all traffic through it. One way to mitigate this threat is to ensure that

the edge devices that are susceptible to physical capture are only RFDs. Another way is

to employ countermeasures to detect unauthorized or duplicate PAN coordinators.

It must be pointed out, however, that the 802.15.4 specification does not make it

mandatory to support the full 255 entries in the ACL table, and in the manner that the

specification describes. Figure 5 shows the CC2420 RAM memory map. It can be seen

that the CC2420 does not have an ACL table. Instead, it has 2 keys. The application may

choose to use one for transmit and the other for receive, or use a single key for both

transmit and receive. These keys do not have an address associated with them. Therefore,

these keys are more akin to the default ACL entry in the 802.15.4 specifications, and can

only effectively support group keying.

26

Figure 5: Chipcon CC2420 RAM memory map.
Source: [From 33]

D. MESSAGE INTEGRITY
In 802.11, message integrity is only protected by a CRC-32 checksum, even when

WEP is turn on. Researchers have shown that it is possible to modify WEP encrypted

packets in transit without detection, because the CRC checksum is an unkeyed function

of the message [37]. The fix is to use a cryptographically secure MAC.

Both 802.15.4 and TinyOS uses a MAC to protect the integrity of their encrypted

messages. It is an accepted wisdom that the security of the MAC is directly related to the

length of the MAC. 802.15.4 applications can use up to 128-bit MAC. CC2420 supports

128-bit MAC only. This is clearly superior to TinyOS’s 32-bit MAC. TinyOS

applications requiring higher assurances should implement countermeasures to prevent an

attacker from making too many blind forgery attempts.

27

E. ENCRYPTION SCHEMES
The notable difference between the encryption schemes of 802.15.4 and TinyOS,

is that 802.15.4 uses a stream cipher, AES-CTR, and a long IV to avoid the issue of IV

reuse, while TinyOS uses a 64-bit block cipher in CBC mode with a shorter IV to

mitigate the risk of information leakage associated with IV reuse. The key length of AES

can be up to 128 bits long, and CC2420 has hardware cryptographic support for 128-bit

keys only. It is reasonable to conclude that 802.15.4 should provide a higher degree of

assurance as far as message confidentiality is concerned.

Note that TinyOS does not have an encrypt-only mode. This is no great loss.

From the discussion in the previous section, the integrity of an encrypted packet cannot

be guaranteed by its CRC checksum. A corollary is that encryption should not be used

without a MAC if its integrity needs to be guaranteed. Hence, TinyOS only supports

authenticate-only and authenticate-encrypt. Researchers have cautioned against using

802.15.4’s AES-CTR security suite [9]. They argued that a simple, single-packet denial-

of-service (DoS) attack can be mounted on a 802.15.4 network that uses the AES-CTR

security suite with replay protection enabled.

F. REPLAY PROTECTION
TinyOS explicitly omitted replay protection in the security architecture. The main

reason is to avoid the extra memory needed to keep the sequence numbers for every node

that a receiver communicates with. Another reason is that the developers believe that

replay protection is better and more efficiently handled by the application, which has

more intimate knowledge of the overall topology and communications pattern of the

network.

It is generally a good idea to have replay protection in link layer security. 802.11

did not have replay protection; hence, messages could be intercepted and replayed

without modification. The result can be denial-of-service attacks, or it can be used as a

launching pad for other attacks, like the man-in-the-middle attacks.

802.15.4 specifies optional replay protection. On paper, peer-to-peer replay

protection should work very well under the specification. But researchers have found that

28

network shared keying using the default ACL entry to be incompatible with replay

protection. This is because the receiver can only keep a single sequence number in the

default ACL entry as the high water mark while receiving packets from many sources,

each maintaining their own sequence numbers.

It must be pointed out that, as can be seen from Figure 5, CC2420 does not have

provision for a replay counter in its RAM memory space. So any replay protection will

have to be implemented in the application space – just like TinyOS. Therefore, one can

conclude that replay protection is currently absent from today’s sensor network link layer

security, until another radio chip comes along that supports this important feature.

G. SUMMARY
The security of 802.15.4 and TinyOS was analyzed and compared in five broad

categories: IV length, access control, message integrity, encryption scheme, and replay

protection. In general, 802.15.4 offers higher assurance in terms of cryptographic

strength, message integrity, and information leakage from IV reuse. TinyOS applications

will need robust re-keying support and countermeasures against forgery attempts to make

up the difference. But they both lack effective peer-level access control and replay

protection – both important aspects of sensor network security.

To validate this security analysis, a sensor network sniffer is needed. A sniffer is

the quintessential tool for modern day network and security analysis. But such a tool is

presently lacking in today’s sensor network development kits. In the following chapters,

the design and implementation of a TinyOS sensor network sniffer will be presented.

29

V. ANATOMY OF THE TINYOS SNIFFER

In the previous chapters, the link-layer security design of TinyOS and 802.15.4

was described and analyzed. To validate the analysis, we need to use a sensor network

sniffer. A sniffer is the quintessential tool for network analysis. But such a tool is

presently lacking in today’s sensor network development kits. In the following chapters,

we will present the design and implementation of a TinyOS sensor network sniffer. The

current design is based on existing sensor network hardware and software components to

enable a low-cost sniffer implementation.

To understand how the sniffer works, it is necessary to first understand how

TinyOS handles incoming network messages, and hence the hardware and software

components necessary to implement such a sniffer.

A. TINYOS FILTERING MECHANISM
A TinyOS packet has the format shown in Figure 4c. The fields of interest are the

following:

1. Destination Address
The destination address refers to the 16-bit node address of the mote. It is

programmed into the mote along with the TinyOS application when the following

command is issued:
make <platform> re|install,<n> <programmer>,<port>

where <n> is the 16-bit node address. The address 0 is typically reserved for the

base station mote.

2. Group ID
The group ID is analogous to the network address for a group of cooperating

motes. It allows multiple distinct groups of motes to share the same radio channel. The

group ID can be set by defining the preprocessor symbol DEFAULT_LOCAL_GROUP. For

example, this symbol can be located in the MakeXbowlocal file in the tinyos-

1.x/contrib/xbow/apps directory. This file is automatically included in the

compilation of almost all TinyOS programs in the tinyos-1.x/contrib/xbow/apps

directory. The default group ID is 0x7D.

30

3. AM Type
TinyOS implements the Active Message (AM) system. AM types are analogous

to port numbers in TCP/IP. Different applications may use different AM types. For

example, for the Surge_Reliable application, the AM type is defined in the Surge.h

header file:

enum {
 AM_SURGEMSG = 17
};

TinyOS automatically filters incoming packets by matching the destination

address in the packet header with the node address of the mote. If the node address is 0,

then TinyOS skips this step – the mote is effectively operating in promiscuous mode. If

the destination address matches the node address, then the entire packet, including the

header, is passed on to the application. It is the application’s responsibility to handle the

group ID and AM fields.

In summary, a TinyOS sniffer can simply be a mote programmed with a node

address of 0, and an application that ignores the group ID and AM fields (assuming no a-

priori knowledge of either of them).

B. COMPONENTS OF THE SNIFFER
The TinyOS sniffer is based on readily available hardware and software

components, and a Java-based application analogous to tcpdump [39].

1. Hardware components
The hardware platform is simply an off-the-shelf mote connected to a PC. The

traditional connection is via the MIB510 programming board to a PC’s serial port. The

TelosB mote offers a more convenient on-board USB connector that plugs directly into

the PC for both the power and serial connections; hence, a more compact solution (see

Figure 6). Connecting via the MIB510 would require not only an external serial cable, but

also an external power supply for the MIB510 programming board. However, the

message format forwarded by a Mica, MicaZ, or TelosB mote is quite different. So the

application will have to decode the message appropriately according to the hardware

used.

31

Figure 6 TelosB mote connected to the USB port of a PC.

2. Software Components
The software consists of one TinyOS application, TransparentBase, and two Java

applications, SerialForwarder and Sniffer.

TransparentBase is one of the many examples of TinyOS applications that can be

found in the tinyos-1.x/apps directory. It acts as a simple bidirectional bridge between

the serial and radio links. TransparentBase has the additional property that it ignores the

Group ID. Programming the TelosB mote with TransparentBase and a node address of 0

gives a promiscuous receiver receiving TinyOS packets from the MicaZ sensor network,

and forwarding them to the PC via the serial link. So long as no data is sent to the serial

link, TransparentBase will also be a unidirectional passive receiver.

As mentioned earlier, it is the responsibility of the TinyOS application to handle

the filtering of group ID and AM type. TransparentBase ignores both the group ID and

AM type fields, so Group ID and AM filtering is not a problem.

At this point, this is pretty much have a functional TinyOS sniffer mote. Next, an

application is needed to communicate with the mote via the serial port. In TinyOS world,

the standard way to this is to use SerialForwarder.

SerialForwarder is a Java application that can be found in the tinyos

/tools/java/net/tinyos directory. SerialForwarder runs on the PC and instantiates a

network server that forwards TinyOS packets read from the serial port to a network port,

32

and vice versa. Typically, it is used to allow applications to communicate with the mote

via a network interface instead of a serial interface – this is especially useful for

distributed network clients, or Java clients like Surge.

The final piece of the puzzle is an application that reads the packet from Serial

Forwarder, extracts the protocol and application information, and outputs the information

in a usable form. There is no such tool in current TinyOS development kits. For this

reason, the Java application Sniffer has been developed. The design and implementation

of Sniffer will be discussed in the next chapter.

Figure 7 illustrates the block diagram of the sniffer.

Figure 7 Block diagram of TinyOS Sniffer.

C. SUMMARY
The TinyOS packet filtering mechanism was discussed, and explained how it can

be used for the purpose of frame capture. The necessary hardware and software

components of a TinyOS sniffer was also presented. However, an application,

Sniffer.java, is still needed that reads the packet from Serial Forwarder, extracts the

protocol and application information, and outputs the information in a usable form. This

will be discussed in the next chapter

33

VI. DESIGN AND IMPLEMENTATION OF THE SNIFFER
APPLICATION

In addition to the analysis of the security architectures of 802.15.4 and TinyOS,

the main development effort in this thesis is the design and implementation of Sniffer.

This is a multi-threaded, tcpdump-like application that reads raw packets from Serial

Forwarder, extracts the protocol and application layer information, and outputs it in a

usable form.

The developmental paradigm of TinyOS is that mote applications running on the

motes are written in nesC, while user applications running on the PC are written in Java.

Keeping in line with this paradigm, Sniffer is also written in Java.

The remainder of this chapter explains the Sniffer application in more details. To

follow the discussion, some working knowledge of Java is assumed, e.g. how to run Java

programs, what are Java classes etc.

A. USAGE
Sniffer is a command line tool with usage as follows:

usage: java Sniffer [-m mica|micaz|telos] [-h host] [-ob filename]

[-?] [-p port] [-l filename] [-oc filename]
-m <mica|micaz|telos> Specifies TOS message format when auto-

detection fails.
-? Print this help text.
-h <host> The host running Serial Forwarder. Can be

a valid hostname or IP address. Default is
local host.

-l <filename> Log screen output to file.
-ob <filename> Output to file in raw binary format.
-oc <filename> Output to file in CSV format.
-p <port> Network port used by Serial Forwarder.

Default is 9001.

The meaning of some of these options will become clear as the implementation of

the program is explained.

34

Figure 8 Process flow chart for Sniffer.

B. PROCESS FLOW

The process flow of Sniffer is depicted in Figure 8. The program first parses the

command line to determine the user specified options, and exits upon detecting invalid

options, or if “-?” is specified to display the help text. Once the options are set, the

program attempts to instantiate a PacketServer class and initialize the Writer class with

the registered outputs. If either of these fails, for example due to a failure to communicate

with a SerialForwarder source, or a file I/O error, the program exits.

At this point, the program is ready to enter into its main processing loop. First, it

requests a packet from PacketServer. Then it passes the packet to the Protocol and AM

35

classes in sequence to process the protocol and application layer information respectively.

Finally, the processed packet is passed to the Writer class for output to the screen, and is

optionally written to file in a variety of formats if the user so specifies. The process loop

continues indefinitely until the user terminates with Ctrl-C.

C. DESCRIPTION OF THE MAJOR JAVA CLASSES
The Java classes that are implemented for Sniffer, and their relationships to each

other, are depicted by the unified modeling language (UML) diagram in Figure 9. Note

two exceptions. Firstly, the Thread super-class is a system provided class. It is included

in the illustration to highlight the fact that Sniffer is a multi-threaded application.

Secondly, the CLI utility library from the Apache Jakarta Commons project [40], not

shown in the illustration, is used to provide the API for working with command line

arguments and options. The user has to ensure that the CLI library is located in the Java

CLASSPATH.

The Sniffer class contains the main function of Sniffer. This is the entry point of

the program, and implements the process flow illustrated in Figure 8. In addition, it keeps

track of packets received as well as packets with protocol processing errors. This

information is displayed on the screen when the user terminates the program with Ctrl-C.

It is useful to look at the UML diagram in the following way. The leftmost branch

consisting of the PacketServer class and its children comprise the input subsystem. The

middle branches consisting of the Protocol and AM classes comprise the processing

subsystem, while the rightmost branch consisting of the Writer class and its children

comprise the output subsystem. Underpinning these subsystems is a collection of data

classes called Packet and Field.

The data classes, and the input, processing and output subsystems are now

discussed in more details.

36

Figure 9 UML diagram of Sniffer.

37

1. Data Classes
In order to capture the representation of a packet accurately as it is processed

through the program, Sniffer defines a Field class and a Packet class. A Field is simply

some value with an associated name. A Packet is represented as a triplet of header,

payload data unit (PDU), and trailer. It may also have a description string. The

description is useful for displaying human-readable packet information on the screen.

The header and trailer are defined as linked lists of Fields. Perhaps more

intriguingly, the PDU is itself defined as a Packet. The Packet class is therefore a nested

class. This allows packets to be encapsulated inside another packet easily.

If the PDU is null, then this Packet is the uppermost packet, and all the

information about the packet is stored in the header. In OSI parlance, an upper layer

payload is encapsulated inside a lower layer protocol. So uppermost, in this case, means

the higher layer payload. The current processing system should only concern itself with

the uppermost packet and payload.

In this case, there are two possibilities. On one hand, the header list may consist

of just a single field containing the data payload waiting to be processed. On the other

hand, the header can be null, indicating that there is no more data to be process, i.e. this

packet has been fully resolved.

Hence, packet protocol processing works as follows:

1) Use the getUppermostPacket method to get the uppermost packet.

2) Use the getUppermostPayload method to get the uppermost payload to be

processed.

3) Process the payload accordingly to derive new header, trailer and PDU

information.

4) Replace the uppermost packet's header, PDU and trailer attributes with the new

information. The new PDU will now become the new uppermost packet to the

next protocol layer.

38

2. Input Subsystem
The heart of the input subsystem is the ByteServer class. A ByteServer object is

instantiated by PacketServer, when it is in turn instantiated by the Sniffer class.

ByteServer is a separate thread of execution from the main Sniffer class. This allows

input from the sniffer mote to be received in the most responsive way, independent from

the execution of the rest of the program.

The ByteServer receives data from the sniffer mote through objects subclassed

from the Source class. Currently, only the SFSource (or Serial Forwarder Source) class is

implemented. However, it is perfectly possible to implement other sources if necessary,

for example a SerialSource class that communicates with the mote directly via serial port

communications, or a file source to read data previously archived in a file. It shall be seen

later that additional sources can be easily created and added to the system. By default,

Serial Forwarder is assumed to be running on the local host, port 9001. If this is not the

case, then the user can specify a host and port using the “-h” and “-p” options.

Data read from the source is stored in a First-In-First-Out (FIFO) buffer. In the

current implementation, when the buffer is full, further packet data are dropped, instead

of overriding the earliest received data.

The Sniffer class does not talk to the ByteServer directly, instead it instantiates

and requests packets from the PacketServer class. PacketServer provides a packet-level

input abstraction to Sniffer. PacketServer makes requests for received data from

ByteServer, and then packages the data bytes into a Packet object as its payload. At the

same time, PacketServer adds a timestamp to this Packet’s header. This timestamp

information allows for temporal analysis of the packets. Strictly speaking, the timestamp

does not represent the time the packet is received by the sniffer mote, but the time

PacketServer receives the data from ByteServer.

3. Processing Subsystem
Packet objects received from the input subsystem are passed to the processing

subsystem, to extract protocol and application layer information. Packet objects are

passed to the Protocol class and then the AM class in sequence.

39

The first thing that the Protocol class does is to see if it needs to determine the

message format. TinyOS messages can have 4 different formats, depending on the mote

used [41]:

1) The original TOS_Msg format used on mica,mica2, and mica2dot,

2) the IEEE802.15.4 format used on telos family motes,

3) the modified TOS_Msg format used on micaz motes, and

4) the Infineon’s eyesIFX platform [42].

The Packet class has a static attribute, msgFormat, that is used to identify the

format. The Protocol class first checks if this attribute is set. If it has not been set, the

Protocol class applies some heuristics to try to guess the message format, and set it to the

appropriate value. If the heuristics fail, then the message format is unknown, and no

further processing will be done on the packet. It is assumed that a given sensor networks

is homogenous, so the message format should be consistent. So the guessing of the

message format is only done once. However, the heuristic rules are not foolproof by any

means, so the fallback is for the user to specify the message format on the command line

via the “-m” option. Once the message format is known, the Protocol class performs the

appropriate protocol processing on the packet.

Once protocol processing is completed, the packet object is passed to the AM

class for application processing. Recall that the AM type of a TinyOS message is

analogous to the port number in TCP/IP. So it is conceivable that in a given sensor

network, there can be more than one AM type. The AM class maintains a list of AM

handlers. The AM class iterates through the list, passing the packet object to each AM

handler. Once an AM handler signals that it has handled the AM type, application

processing is complete.

Currently, the only AM handler implemented is the AMCountMsgHandler class,

for the test application CountRadio. But it is easy to create and add AM handlers.

4. Output Subsystem
The Writer class is responsible for writing the packet information to a variety of

output channels. One of the features of the output subsystem is that packet information

40

can be written to more than one channel simultaneously. Thus the user has the maximum

flexibility in storing packet information.

The Writer class maintains a list of Output objects. The ScreenOutput object is

always available. At the same time, the user can choose to enable other output channels

using command line options. Currently, the following FileOutput objects are available:

logging the screen output to file (“-l”), writing to a binary file (“-ob”), and writing to a

comma separated value (CSV) file (“-oc”). The CSV file, for example, is readily

imported into Microsoft Excel for data analysis purposes. The binary file, on the other

hand, provides a more efficient format to store packet information.

When an Output object is instantiated, its run method is also immediately

registered with the JVM runtime as a shutdown hook. This is a little known feature of

Java that was recently added to allow programs to perform last minute clean-ups before

JVM termination. In this case, the shutdown hooks enable the ScreenOutput object to

print out packet accounting information, and the FileOutput objects to flush their I/O

buffers and close the file properly.

Again, if a particular output channel is not available, it can be easily created and

added to the system.

D. EXTENDING SNIFFER
The Sniffer program has been designed so that it is easy to create and add

functionalities to the various subsystem, without affecting how the rest of the system

works. Part of the reason for this capability lies in the object oriented nature of Java. In

general, adding functionality to Sniffer can be done in two steps: subclassing an existing

class, then making the new class known to the Sniffer at the appropriate code locations.

1. Adding Input Sources
New input sources should subclass the Source class, or any of its subclasses, and

override the open, close, and read methods where necessary.

Within the main Sniffer class, a new command line option may be specified so

that the user can choose this input source instead of the default SFSource. Then inside the

code that checks for this option in parseArgs, the new Source object must be instantiated,

41

and assigned it to the source static variable. ByteServer will automatically interface with

the new input source.

2. Adding AM Handlers
Handlers for new AM types should subclass the AMHandler class, and override

the processAM method.

The new AM handler class must then register with the AM class within the

following code static segment of AM.java:

/*
 * Static code block.
 * This is where new AM handlers are registered.
 */ 	

static {	

appsList.add(new AMCountMsgHandler ());	

// Add new AM handlers here, like above.

}	

3. Adding output channels
New output channels should subclass the Output class, and override the open,

close, write, and run methods where necessary.

Similar to the input subsystem, within the main Sniffer class, a new command line

option may be specified so that the user can choose to enable this new output channel.

Then inside the code that checks for this option in parseArgs, the new Output object must

be instantiated, and added to Writer’s list of Output objects using the addOutput method.

Packet information will then be automatically written to the output channel.

E. TEST AND EVALUATION
The sniffing functionality of the TinyOS sniffer was tested and evaluated using a

simple test application. For the purpose of this study, the target sensor network is a pair

of MicaZ motes running the CountRadio application. The sniffer consists of a TelosB

mote connected to a PC.

For convenience, it was assumed that the operating radio channel was known. It is

not difficult to find out anyway – a simple sequential scan through the radio frequency

channels, or a spectrum analyzer, will easily reveal the operating radio channel.

42

1. CountRadio application
CountRadio is an example application that can be found under the tinyos/apps/

directory. From its README.CountRadio file:

“CountRadio is a simple led/radio count program. The default application
built from this directory is CountDual. CountDual either sends a count
over the radio if the node address is equal to 1, or displays a count
received over the radio otherwise.”

The transmitting mote broadcasts a packet every 200 milliseconds, or five packets

per second. The payload of the packet has the format defined in the CountMsg.h file:
enum
{
 AM_COUNT_MSG = 4,
};

typedef struct
{
 uint16_t n;
 uint16_t src;
} CountMsg_t;

Hence the payload is of constant four byte length, where the first two bytes

represent a monotonically increasing sequence number, followed by a constant source

address which should be 1. Therefore, this provides a very predictable data source to

verify the correctness of our Sniffer program.

2. Output
With the motes up and running, Sniffer is started from the command line with no

additional options. Figure 10 shows the captured screen output of Sniffer. Each line

represents one packet. The format of the output is designed to mimic tcpdump to a certain

extent. It has the following form:

<Timestamp> <Protocol> <Grp>.<Dest>.<AM> (<Len>) [<Payload>] <CRC>

The timestamp is in the 24-hour notation, with up to millisecond precision. The

protocol is denoted as “TOS”, meaning TinyOS with TinySec disabled. The group ID,

destination address and AM types are grouped into a “dotted” decimal notation that

resembles an IP address with its port number.

43

Then using the CSV file output of Sniffer, and importing into Excel, it can be

further verified that the sequence number N runs in consecutive order, so no packets were

missed.

Figure 10 Captured screen output of Sniffer sniffing on 2 motes running the
CountRadio application. The sniffer was started after the motes. Hence the lower
packet count.

44

3. Observations and Recommendations
While it would appear that the Sniffer is functioning correctly, the following

observations are made.

Timestamp: The first observation is that the intervals between sequential

packets are not exactly 200 milliseconds, give or take some acceptable deviations. In fact,

just from the snapshot shown in Figure 10 alone, the interval can be as short as four

milliseconds, to as large as 400 milliseconds. In a network where the data rate is on the

order of tens to hundreds of kilobits per second, an error of 400 milliseconds may be

enough to skew certain traffic analysis.

The inaccuracy of the timestamp is mainly due to the fact that the sniffer mote

does not currently have the ability to affix timestamps to sniffed packets as it receives

them. Instead, the timestamp is only added at the PacketServer level. The fact that the

Source object is a network interface, while convenient from programming point of view,

inevitably adds further errors to the timestamp. There is clearly room for improvement.

CRC: The second, and more important, observation is that CRC information is

missing. Unfortunately, the point along the TinyOS chain where the CRC information is

lost could not be determined. But it does point out that the current implementation is

incomplete, since it cannot provide the packet in its entirety for analysis.

To address these deficiencies, the Sniffer program should be more tightly

integrated with the mote hardware. One possibility is to implement a Source object that

interfaces with the mote directly via the serial link without any mediation. In this way,

the Source object can also be responsible to affix a timestamp on the received packets for

a higher degree of accuracy in the timestamp.

F. SUMMARY
The design and implementation of the Sniffer program has been described in

detail, including its usage, process flow, and the functions of the major Java classes. It

has also been explained how new input sources, application handlers, and output channels

can be easily created and added to the program in a very modular way.

45

The testing of the Sniffer program indicates that there are deficiencies in its

implementation: firstly, the timestamp has too much deviation. Secondly, the Sniffer does

not have access to the sniffed packet in its entirety. A tighter integration of the Sniffer

program and the mote hardware should be able to address these deficiencies.

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

VII. CONCLUSION

TinyOS and IEEE 802.15.4 are the two dominant implementations of sensor

networks today. TinyOS targets devices where energy and computational power are the

significant resource constraints. 802.15.4 takes a more modular approach to its design,

and is suited for a variety of devices and applications. Currently TinyOS is more popular

in the sensor network community, but that is probably because it has been around longer.

With 802.15.4 being formally adopted as a standard recently, it should not be long before

802.15.4 starts to take root in the sensor network community.

This thesis examined the security architectures of TinyOS and 802.15.4. It found

that 802.15.4 generally offers higher assurances in terms of cryptographic strength,

message integrity, and information leakage from IV reuse. TinyOS applications will need

robust re-keying support and countermeasures against forgery attempts to make up the

difference. But they both lack effective peer-level access control and replay protection –

both important aspects of sensor network security.

For resource-limited sensor networks, TinyOS is still the better choice. For

military applications where security and performance needs dominate, it is envisioned

that a hybrid TinyOS/802.15.4 system would be ideal. Given the open source nature of

the TinyOS project, it is conceivable that TinyOS can be adapted to leverage on

802.15.4-compliant hardware for its link layer security, instead of relying on TinySec.

TinyOS packets can be encapsulated inside 802.15.4 frames, just like TCP/IP packets are

encapsulated inside 802.11 frames. In this way, sensor network applications can be built

that enjoy the best of both worlds – the mature and optimized environment of TinyOS,

and the superior link layer security offered by 802.15.4.

As a tool for validating the above security analysis and also to perform further

analysis, the design and implementation of a TinyOS sniffer application was presented. A

sniffer is the quintessential tool for modern day network analysis. But such a tool is

presently lacking in today’s sensor network development kits. The current design is based

on existing sensor network hardware and software components to enable a low-cost

48

sniffer implementation. The sniffer has also been designed to be easily extensible in

terms of functionalities.

The following topics are the recommended for further research:

• Improve the functionality of the TinyOS sniffer. Areas of improvement

include tighter integration of the Sniffer with the mote hardware, and

additional output modes for packet data such as the extensible markup

language (XML) format.

• Integrate TinyOS with 802.15.4-compliant hardware for high assurance

applications, with support for peer-level access control and replay protection.

49

LIST OF REFERENCES

1. Chee-Yee Chong and Srikanta P. Kumar. “Sensor Networks: Evolution,
Opportunities and Challenges.” Proceedings of the IEEE, vol. 91, issue 8, pp.
1247-1256, Aug. 2003.

2. Adrian Perrig, John Stankovic, and David Wagner. “Security in Wireless Sensor
Networks.” Communications of the ACM, vol. 47, issue 6, pp. 53-57, Jun. 2004.

3. Haowen Chen and Adrian Perrig. “Security and Privacy in Sensor Networks.”
IEEE Computer, pp. 103-105, Oct. 2003.

4. Anthony Wood and John Stankovic. “Denial of Service in Sensor Networks.”
IEEE Computer, pp. 48-56, Oct. 2002.

5. Chris Karlof and David Wagner. “Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures.” In First IEEE International Workshop on Sensor
Network Protocols and Applications (IEEE SPNA), pp. 113-127, May 2003.

6. John Douceur. “The Sybil Attack.” In Proc. of the IPTPS02 Workshop, pp. 251-
260. Cambridge, MA, USA. Mar. 2002.

7. James Newsome, Elain Shi, Dawn Song, and Adrian Perrig. “The Sybil Attack in
Sensor Networks: Analysis and Defenses.” In Information Processing in Sensor
Networks (IPSN’04), pp. 259-268. Berkeley, CA. Apr. 2004.

8. (Jan. 2004), “CC2420 Packet Sniffer.” Chipcon AS, Oslo, Norway. [Online].
Available: http://www.chipcon.com/index.cfm?dok_id=129&kat_id=6

9. Naveen Sastry and David Wagner. “Security Considerations for IEEE 802.15.4
Networks.” Presented at the ACM Workshop on Wireless Security 2004
(WiSE’04), pp. 32-42. Philadelphia, Penn., USA. Oct. 1, 2004.

10. Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J.D. Tygar.
“SPINS: Security Protocols for Sensor Networks.” Wireless Networks, vol. 8,
issue 5, pp. 521-534. Sep. 2002.

11. “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).”
IEEE Standard 802.15.4-2003. May 2003.

12. Pete Cross. “Zeroing on Zigbee Part 1,” Circuit Cellar, issue 175, pp. 16-23. Feb.
2005.

13. Zigbee Alliance. http://www.zigbee.org. Last accessed May 2006.
14. “Information technology - Open Systems Interconnection - Basic Reference

Model: The basic model.” ITU-T Recommendation X.200. Jul. 1994.
15. Daniel Barrett and Richard Silverman. SSH, The Secure Shell : The Definitive

Guide, 2nd ed. O'Reilly Media, Inc. May 2005.
16. The TLS Protocol, Version 1.0. RFC 2246. Jan. 1999.

50

17. Security Architecture for the Internet Protocol. RFC 2401. Nov. 1998.
18. William Stallings. Network Security Essentials, Applications and Standards, 2nd

ed. Prentice Hall. 2003.
19. Jean-Francois Raymond. “Traffic Analysis: Protocols, Attacks, Design Issues and

Open Problems.” In Designing Privacy Enhancing Technologies: Proceedings of
International Workshop on Design Issues in Anonymity and Unobservability, pp.
10-29. 2001.

20. Chris Karlof, Naveen Sastry, and David Wagner. “TinySec: A Link Layer
Security Architecture for Wireless Sensor Networks.” In Second ACM Conference
on Embedded Networked Sensor Systems, pp. 162-175. Baltimore, Maryland,
USA. Nov. 2004.

21. “Security Architecture for Open Systems Interconnection for CCITT Applications
– Annex D Layer Two Security Service and Mechanisms for LAN.” ITU-T
Recommendation X.800 Amendment 1. Oct. 1996.

22. Bruce Schneier. Applied Cryptography, 2nd ed. Wiley. 1996.
23. “Federal Information Processing Standards Publication 197: Advanced

Encryption Standard (AES).” National Institute of Standards and Technologies
(NIST), FIPS PUB 197. Nov. 26, 2001.

24. D. Whiting, R.Housley, and N. Ferguson. Counter with CBC-MAC (CCM). RFC
3610. Sep. 2003.

25. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A Concrete Security
Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation.”
in Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS 97), New York, USA. 1997.

26. E. Dawson and L. Nielsen. “Automated cryptanalysis of XOR plaintext strings.”
Cryptologia, vol 2, pp. 165-181. Apr. 1996.

27. Crossbow Technology. Inc., http://www.xbow.com. Last accessed May 2006.
28. TinyOS. http://www.tinyos.net. Last accessed May 2006.

29. David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. “The nesC language: A holistic approach to networked embedded
systems.” In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1-11. 2003.

30. (Sep. 2005) “Getting Started Guide, Rev. A, Sep. 2005, Document 7430-0022-
07.” Crossbow Technology, Inc., San Jose, CA., USA. [Online]. Available:
http://www.xbow.com/Support/Support_pdf_files/Getting_Started_Guide.pdf

31. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications.” ANSI/IEEE Std 802.11. 1999.

32. Jon Edney and William Arbaugh. Real 802.11 Security: Wifi Protected Access
and 802.11i. Addison-Wesley. 2004.

51

33. (Oct. 2005) “SmartRF® CC2420 Datasheet (rev 1.3), 2005-10-03.” Chipcon AS,
Norway. [Online]. Available:
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

34. “Mica2 data sheet.” Crossbow Technology, Inc., San Jose, CA., USA. [Online].
Available:
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datashe
et.pdf

35. “MicaZ data sheet,” Crossbow Technology, Inc., San Jose, CA., USA. [Online].
Available:
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datash
eet.pdf

36. (Mar. 29, 2004) “New MAC Address Spoofing Tool for Linux (SirMACsAlot).”
Defcon Forums, General Area, Wireless Technology. [Online]. Available:
http://forum.defcon.org/showthread.php?t=3541

37. Nikita Borisov, Ian Goldberg, and David Wagner. “Intercepting mobile
communications: The insecurity of 802.11.” In The Seventh Annual International
Conference on Mobile Computing and Networking (MOBICOM 2001), pp. 180-
189. 2001.

38. (Jun. 17, 2004) Chris Karlof, Naveen Sastry, and David Wagner. “TinySec: User
Manual.” [Online]. Available: http://www.cs.berkeley.edu/~nks/tinysec/TinySec-
userguide.pdf.

39. tcpdump/libpcap. http://www.tcpdump.org. Last accessed May 2006.

40. The Apache Jakarta Project, Commons CLI.
http://jakarta.apache.org/commons/cli. Last accessed May 2006.

41. (Mar. 25, 2005) Gilman Tolle. “Serial Forwarder Protocol” [Online]. Available:
http://cents.cs.berkeley.edu/tinywiki/index.php/Serial_Forwarder_Protocol

42. (Jan. 30, 2006) “eyesIFX Sensor Network Development Kit- Documentation
(Version 1.0.2)” Infineon Technologies AG, Germany. [Online]. Available:
http://www.infineon.com/upload/Document/Eyes2.1_Doc_102.pdf

52

THIS PAGE IS INTENTIONALLY LFFT BLANK

53

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. John McEachen
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Weilian Su
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Temasek Defence Systems Institute

National University of Singapore
Singapore

